Introduction

One constant in today’s world is change. Change in dental anesthesia has been a vital factor in its multifactorial process. Further preclinical dental education traditionally consists of lecture seminars, anatomic models, and peer-to-peer injections as a method of learning (1). Importance of learning dental anesthesia requires understanding elements of pharmacology along with head and neck

^ ORCID: 0000-0001-7444-2192.
anatomy. Chapters in dental anesthesia textbooks dedicate much to discussing the trigeminal nerve and its branches innervating teeth (2-5). Not knowing specifics of the trigeminal nerve and its branches would be a disservice to patients receiving care (6).

As technology advances, changes are adopted and used to educate oral healthcare professionals (OHP) (7). Dental anesthesia addresses pain management and is essential in the dental profession (6,8-11). This article summarizes innovations developed over the last 5 years with preclinical dental anesthesia curricula and the advancing technology in clinical practice for administering local anesthesia safely and comfortably. We present the following article in accordance with the Narrative Review reporting checklist (available at https://joma.amegroups.com/article/view/10.21037/joma-21-9/rc) (12).

Methods

Information gathered to write this article is presented in Tables 1,2. Data collected was from literature from 2016 to 2021. Keywords to help search were initially preclinical dental anesthesia, innovation in dental anesthesia, and technology in pain management. From the searches, articles were specific to adult population and then further specified for topics presented in article.

Innovations in dental education

Learning dental local anesthesia is a multifactorial process, advancements in preclinical education provide opportunities for OHP to learn beyond lecture and seminar. Traditional methods of teaching OHP involves reviewing material found in textbooks and in person lectures (1). As we look towards the future, our article will acknowledge the changes in technology and its uses in dental curriculums.

Online resources

For decades, interestingly, OHP were offered continuing dental education online opportunities. Various dental organizations and dental companies were already reaching

<table>
<thead>
<tr>
<th>Table 1 Search strategy summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Date of search</td>
</tr>
<tr>
<td>Databases and other sources searched</td>
</tr>
<tr>
<td>Search terms used</td>
</tr>
<tr>
<td>Timeframe</td>
</tr>
<tr>
<td>Inclusion and exclusion criteria (study type, language restrictions etc.)</td>
</tr>
<tr>
<td>Selection process</td>
</tr>
<tr>
<td>Any additional considerations, if applicable</td>
</tr>
</tbody>
</table>

NCBI, National Center for Biotechnology Information; N/A, not applicable.

<table>
<thead>
<tr>
<th>Table 2 Sources used for overview from past 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
</tr>
<tr>
<td>NCBI</td>
</tr>
<tr>
<td>Google Scholar</td>
</tr>
<tr>
<td>Personalized search of text using institutional database</td>
</tr>
</tbody>
</table>

NCBI, National Center for Biotechnology Information.
Five to ten years ago, subscription-based software programs started to be utilized to engage students with online self-guided learning. The program Softchalk® was implemented in various curricula and used to help learn anatomy and deliver additional content in dentistry (17-20). The software program enabled educators using Canvas®, the institutional intranet system, to create their own engaging, interactive content, add it to their courses via the intranet system and record detailed student score results for their SoftChalk® content into the Canvas® gradebook.

Recent methods of learning dentistry have become more progressive, yet when the world was faced with the COVID-19 pandemic necessitating all didactic content to be delivered online, educating OHP drastically changed. Educators became more creative with content delivery and additional online resources were explored to optimally deliver certain details of courses (15,16,21,22).

Technology such as Zoom® allowed predoctoral OHP to meet on virtual platforms and break into smaller discussion groups to deepen learning of the course material (16,23). Zoom® is a cloud-based peer-to-peer videoconferencing software platform that allows faculty to connect with students via their laptops or phones and deliver course content. Zoom® enables face-to-face interactions and faculty can display lecture content as well as break students into smaller discussion groups or “break out rooms” (Figure 1).

Programs such as WebEx®, Microsoft Teams®, Google groups® are other platforms available for digital teaching and group breakouts. COVID-19 necessitated use of technology to teach students preclinical material that was once taught in person. These technologies are being used rather universally in the preclinical dental curricula (15-19,22-25). Another advantage from innovations discussed above is the ability to model communication with novice OHP to help with patient-centered care (6). As telehealth progresses in medicine, we recognize that proximity barriers need to be removed and communication is essential.

Institutional programs continued in their advancements online and others introduced sites such as Osmosis.org to help with reviewing curricular (24,25). Osmosis® medical is a medical education platform that offers high quality animated videos on medical school subjects and clinical content. They have over 1,800 videos offering content

Figure 1 Small Group Zoom® Break Out Sessions (this image is published with the participants’ consent).
on basic sciences (anatomy, physiology, biochemistry, pharmacology, and similar subjects), and other medical school content such as organ system review, pathology, clinical reasoning.

Videos

Videos have been used for decades in other professions and were always a popular adjunct to traditional lectures but are now becoming more popular for dental education content (26). With upgrades to different technologies from cameras to lenses, audio, and editing features, video technology is more advanced and particularly aids those who are visual learners (Figure 2). Step by step videos help students learn various aspects of head and neck anatomy important for dental anesthesia. Mixed media using animation has been adopted within the past 5 years (26-29). The use of upgraded technology to capture high-definition quality video makes the imagery more detailed, more compelling, and arguably enables more effective learning. Video content also allows for more creative presentation styles, such as a karaoke video using music of generational genre to make normally dry didactic information a bit more ‘memorable’ for students before they enter clinical patient care (30). YouTube® is also a platform that has various videos available, but disclosures need to be mentioned to OHP about the credibility of content presented.

Virtual reality and hands on haptic technology

Virtual reality has been employed for both dental students and dental patients. Virtual reality learning in dentistry, where instruments are being used for procedures, generally includes a haptic interface. Haptic means “to touch”. The most common type of haptic interface provides force feedback, giving the student real-time information about their force or pressure on the instrument. Hands-on haptic technology combined with virtual reality technology has enabled students to learn how to correctly hold a dental syringe virtually, to find anatomical landmarks important for delivering dental local anesthesia virtually and has allowed dental students to attempt an injection using a virtual reality scene. For dental patients with dental fear and anxiety, virtual reality allows the dental patient as many virtual contact experiences as necessary for desensitization and anxiety reduction prior to dental procedures (31-34). OHP outcomes with haptic technology and virtual reality have been favorable, but further study to evaluate efficacy is needed.

Innovation in clinical application

Many local anesthesia clinical advances have been made in the global dental market. Discussion presented is limited to local anesthesia innovations in the United States marketplace.

Hypnosis

A technique used in the past that was not considered favorable in medical communities or in Western culture, has begun to gain momentum in dental anesthesia (35,36). Recent studies suggest that hypnosis is possible and offers an alternative option other than pharmaceuticals for patients seeking dental care. A recent case study presented three clinical situations where patients were able to undergo dental treatment with the use of hypnotic therapy without administration of dental anesthesia. This technique, although not foreign, is becoming more accepted in western society (36,37). Patients benefit from this alternative technique avoiding needle injections and local anesthetic medications that must be processed by the body. Hypnosis provides dental practitioners another patient management option and allows OHP to offer a less invasive alternative for providing dental care to their patients. Hypnosis is a specific technique not frequently taught as a preclinical technique, however, the understanding of using calming techniques to help with patient management is discussed for a better patient experience (6).

Buffering

Commercial local anesthetic solutions have an acidic pH to
maximize water solubility and chemical stability. Some of the acidic form of this local anesthetic must be deionized to penetrate the lipid bilayer, enter cells, and become effective. While it takes some time for the body to naturally buffer injected acidic local anesthetic solution, buffering can be accomplished in the syringe seconds before injection. Studies suggest this leads to faster, more profound local anesthesia and greater patient comfort at the injection site (38-41). Currently, there are two buffering systems available for dental anesthesia. Some institutions and affiliated clinical programs are applying the use of buffering in patient care.

The Anutra® System, introduced in 2015, uses a haptic syringe, and a mixing system using multidose vial of 2% Lidocaine HCl 1:100,000 epinephrine to combine 8.4% sodium bicarbonate (Figures 3,4).

The Onset Buffering Pen by Onpharma® is approved by the US Federal and Drug Agency to be used with all available dental anesthetics in the United States. The system uses its pen to calculate the precise amount of 8.4% sodium bicarbonate to be exchanged into the dental anesthetic cartridge (42). Due to the precise exchange, the pH of the anesthetics comes out to about 7.4, physiologic pH. Once the cartridge is buffered, it should be injected immediately (Figure 5).

Computer controlled local anesthesia device (CCLAD)

The introduction of CCLAD began in late 1990 (43). Milestone Scientific®, was the pioneering system that helped get the CCLAD credibility in dental anesthesia. Over time, more companies developed CCLAD with the purpose of controlling the speed of anesthesia delivery to create a painless injection (8,44,45). Through innovations and updates, the Wand/STA® is now a system that works using a foot pedal to control anesthetic delivery through a handpiece that does not resemble a standard syringe. This attached system provides a more ergonomic option for OHP and comes with an audible indicator of anesthetic delivery speed. Recently, Dentapen® was launched in the United States as a battery-operated CCLAD. This system is equipped with a wireless battery-operated device, cartridge container, and handles to control the CCLAD system. The two handles create an ergonomic pen grasp hold of the CCLAD for the OHP. Once disassembled, the cartridge container and handles can be placed into autoclave or wiped with disinfectant wipes. The battery-operated unit can be disinfected using disinfecting wipes.

Retraction and oscillation

The Dental Vibe® is a system that adds an element of safety for the OHP and comfort during delivery for the patient.
This system is based on the Gate Theory of pain and the limited capacity of the body to perceive many stimuli at once (46-48). The system includes a rechargeable unit that uses a disposable tip to retract and provide light and oscillation of the tissue during injection. The use of disposable tip helps reduce risk of intraoral needlestick injury by removing the retracting finger from the intraoral mucosa (49-51). For OHP, the Dental Vibe allows for instrument rather than finger retraction while administering local anesthesia, which has been proven to lead to less needlestick injury, particularly in newer practitioners who have less local anesthesia experience (51-53). The oscillating vibrations send pulsations deep into the tissue to stimulate firing of alpha fibers and distract the patient from needle insertion and the pain (48,49,54,55) (Figure 6). Currently, there are several institutions in the United States using the Dental Vibe (Figure 7) in clinical application while others are teaching use of instrument retraction in preclinical teaching and clinical application.

Discussion

Advancements in preclinical education are the new normal, with technology providing flexibility for different learning styles, making learning deeper and more meaningful and better preparing the students for transition to clinical learning on live patients. By contrast, advancements in clinical education have greater patient safety and comfort in mind as well as greater provider safety and efficacy when delivering local anesthesia. Innovation and technology advancements in clinical education must necessarily benefit both OHP and the patient. Technology advancements in the total educational program, which necessitates discussion of both preclinical and clinical advancements merits further study. Bringing awareness to growth and new developments helps broaden the opportunities for OHP in preclinical education and clinical application.

Because the innovations mentioned above are contemporary, not all dental school curriculums are applying use of the technology discussed.

Limitations to having access to innovations and technology discussed may be financial, calibration of faculty, and availability of a reliable internet source. Other limits to our article are the focus on dental local anesthesia. Unfortunately, other alternative treatments, such as intravenous sedation was not discussed. More data and of the efficacy of intravenous sedation has been further evaluated and concludes great benefit for clinical application (56).

Conclusions

Local anesthesia teaching methods and local anesthesia clinical technology is being consistently improved. With technology and innovations being introduced, education and clinical application continue to progress.

More studies will be needed to evaluate both teaching methods using new technology and chairside devices seeking to improve the local anesthesia clinical experience for both the dentist and the patient. As OHP improve in clinical care, more data should be collected to determine success or failure of local anesthesia during patient care. One factor that is absolute, and should not change, is the focus on maintaining profound anesthesia for patient treatment in dentistry.

Acknowledgments

The authors would like to acknowledge the University of the Pacific, Arthur A. Dugoni School of Dentistry in San Francisco, California, and the School of Dental Medicine, University of California, San Francisco, San Francisco, California, for support.
Francisco, CA. In addition, we would like to also thank Ms. Dominique Winfield, Dr. Bina Surti, and Mr. Michael Interrante.

Funding: None.

Footnote

Reporting Checklist: The authors have completed the Narrative Review reporting checklist. Available at https://joma.amegroups.com/article/view/10.21037/joma-21-9/rc

Peer Review File: Available at https://joma.amegroups.com/article/view/10.21037/joma-21-9/prf

Conflicts of Interest: Both authors have completed the ICMJE uniform disclosure form (available at https://joma.amegroups.com/article/view/10.21037/joma-21-9/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

doi: 10.21037/joma-21-9